Midterm Exam - Introduction to Symplectic Geometry M. Math II

23 February, 2025

- (i) Duration of the exam is 3 hours.
- (ii) The maximum number of points you can score in the exam is 100 (total = 110).
- (iii) You are not allowed to consult any notes or external sources for the exam.

Roll Number:

1. (10 points) Let (V, ω) be a finite-dimensional symplectic vector space. Show that there is an $n \in \mathbb{N}$ and a basis $(u_1, \ldots, u_n, v_1, \ldots, v_n)$ of V such that

$$\omega(u_j, u_k) = \omega(v_j, v_k) = 0, \quad \omega(u_j, v_k) = \delta_{jk}$$

for $1 \leq j, k \leq n$.

- 2. (10 points) Let (V, ω) be a symplectic vector space over \mathbb{R} . Let W be a subspace of Vand let $W^{\perp} := \{ w \in V \mid \omega(v, w) = 0 \forall v \in V \}$. Show that ω induces a symplectic form on the quotient space $W/(W \cap W^{\perp})$. Total for Question 2: 10
- 3. (a) (10 points) Let (V, ω) be a symplectic vector space over \mathbb{R} . Show that a linear map $\Psi: V \to V$ is a symplectomorphism if and only if its graph

$$\{(v, \Psi(v)) : v \in V\}$$

is a Lagrangian subspace of $(V \oplus V, -\omega \oplus \omega)$.

Total for Question 1: 10

(b) (15 points) Let $W \subset \mathbb{R}^{2n}$ be a subspace of the form

$$W = \{(u, Au) : u \in \mathbb{R}^n\}$$

with $A \in M_n(\mathbb{R})$. Prove that W is Lagrangian if and only if A is symmetric.

Total for Question 3: 25

4. (a) (15 points) Prove that $W \subset \mathbb{R}^{2n}$ is a Lagrangian subspace if and only if there exists a unitary matrix $U = X + iY \in U(n)$ (X, Y are matrices containing entrywise real part, imaginary part of U, respectively) such that

$$W = W_U := \left\{ \begin{pmatrix} Xu \\ Yu \end{pmatrix} : u \in \mathbb{R}^n \right\}.$$

(b) (10 points) Let $U, V \in U(n)$. Prove that $W_U = W_V$ if and only if $UU^T = VV^T = I_n$.

Total for Question 4: 25

Let (V, ω) be a symplectic vector space over \mathbb{R} . A complex structure J is said to be ω -compatible, that is, $\omega(Jx, Jy) = \omega(x, y)$ for all $x, y \in V$. An ω -compatible complex structure J on V is said to be positive if $g(x, y) := \omega(x, Jy)$ defines a positive-definite symmetric bilinear form.

- 5. (a) (15 points) Prove that a complex structure J is ω -compatible if and only if there exists a standard symplectic basis $u_1, \ldots, u_n, v_1, \ldots, v_n$ such that $v_j = Ju_j$ for $1 \le j \le n$.
 - (b) (15 points) Prove that the space of ω -compatible positive complex structures is non-empty.

Total for Question 5: 30

6. (10 points) Let (V, ω) be a real symplectic space and J a positive compatible complex structure. Show that

$$U(V,J) = Sp(V) \cap O(V,g).$$

Total for Question 6: 10